Managed Attributes

Why Manage Attributes?

Object attributes are central to most Python programs - they are where we
often store information about the entities our scripts process.

Normally, attributes are simply names for objects; a person’s name attribute, for
example, might be a simple string, fetched and set with basic attribute syntax.

person.name # Fetch attribute value
person.name = value # Change attribute value

class Person:
def getName(self):

if not valid():

raise TypeError('cannot fetch name")
else:

return self.name.transform()

def setName(self, value):
if not valid(value):
raise TypeError('cannot change name')
else:
self.name = transform(value)

person = Person()
person.getName()
person.setName('value')

Inserting Code to Run on Attribute

Access

A better solution would allow you to run code automatically on attribute access,
if needed.

That's one of the main roles of managed attributes - they provide ways to add
attribute accessor logic after the fact.

More generally, they support arbitrary attribute usage modes that go beyond
simple data storage.

The four accessors

The __getattr__ and __setattr__ methods, for routing undefined attribute
fetches and all attribute assignments to generic handler methods.

The __getattribute__ method, for routing all attribute fetches to a generic
handler method.

The property built-in, for routing specific attribute access to get and set handler
functions.

The descriptor protocol, for routing specific attribute accesses to instances of
classes with arbitrary get and set handler methods, and the basis for other tools
such as properties and slots.

The four accessors

All four techniques share goals to some degree, and it's usually possible to code
a given problem using any one of them.

They do differ in some important ways, though.

For example, the last two techniques listed here apply to specific attributes,
whereas the first two are generic enough to be used by delegation-based proxy
classes that must route arbitrary attributes to wrapped objects.

Properties

The property protocol allows us to route a specific attribute’s get, set, and
delete operations to functions or methods we provide, enabling us to insert
code to be run automatically on attribute access, intercept attribute deletions,
and provide documentation for the attributes if desired.

Properties are created with the property built-in and are assigned to class
attributes, just like method functions. Accordingly, they are inherited by
subclasses and instances, like any other class attributes.

Their access-interception functions are provided with the self instance
argument, which grants access to state information and class attributes available
on the subject instance.

Properties

A property manages a single, specific attribute; although it can't catch all
attribute accesses generically, it allows us to control both fetch and assignment
accesses and enables us to change an attribute from simple data to a
computation freely, without breaking existing code.

As we'll see, properties are strongly related to descriptors; in fact, they are
essentially a restricted form of them.

The Basics

A property is created by assigning the result of a built-in function to a class
attribute:

attribute = property(fget, fset, fdel, doc)

A First Example

To demonstrate how this translates to working code, the following class uses a
property to trace access to an attribute named name; the actual stored data is
named _name so it does not clash with the property.

class Person: # Add (object) in 2.X
def init (self, name):
self. name = name
def getName(self):
print('fetch...")
return self. name
def setName(self, value):
print('change...")
self. name = value
def delName(self):
print('remove...")
del self. name
name = property(getName, setName, delName, "name property docs")

bob = Person('Bob Smith")
print(bob.name)
bob.name = 'Robert Smith'
print(bob.name)

del bob.name

print('-'%*20)
sue = Person('Sue Jones')
print(sue.name)

print(Person.name. doc

bob has a managed attribute
Runs getName
Runs setName

Runs delName

sue inherits property too

Or help(Person.name)

c:\code> py -3 prop-person.py
fetch...

Bob Smith

change. ..

fetch...

Robert Smith

remove...

Sue Jones
name property docs

Computed Attributes

class PropSquare:
def init (self, start):
self.value = start

def getX(self): # On attr fetch
return self.value ** 2
def setX(self, value): # On attr assign
self.value = value
X = property(getX, setX) # No delete or docs
P = PropSquare(3) # Two instances of class with property
Q = PropSquare(32) # Each has different state information
print(P.X) #3™2
P.X =4
print(P.X) #4 2

print(Q.X) #32%2(1024)

Coding Properties with Decorators

As of Python 2.6 and 3.0, property objects also have getter, setter, and deleter

methods that assign the corresponding property accessor methods and return a
copy of the property itself.

We can use these to specify components of properties by decorating normal
methods too, though the getter component is usually filled in automatically by
the act of creating the property itself.

class Person:
def _init_ (self, name):
self._name = name

@property

def name(self): # name = property(name)
"name property docs"
print('fetch...")
return self. name

@name.setter

def name(self, value): # name = name.setter (name)
print('change...")
self. name = value

@name.deleter

def name(self): # name = name.deleter(name)
print('remove...")
del self. name

bob = Person('Bob Smith')
print(bob.name)

bob.name = 'Robert Smith’
print(bob.name)

del bob.name

print('-"'*20)

sue = Person('Sue Jones")
print(sue.name)
print(Person.name. doc)

Dbob has a managed attribute
Runs name getter (name 1)
Runs name setter (name 2)

Runs name deleter (name 3)

sue inherits property too

Or help(Person.name)

In fact, this code is equivalent to the first example in this section—decoration is just
an alternative way to code properties in this case. When it’s run, the results are the same:

c:\code> py -3 prop-person-deco.py
teteh. ..

Bob Smith

change...

fetch...

Robert Smith

remove. ..

Sue Jones
name property docs

Descriptors

Descriptors provide an alternative way to intercept attribute access; they are
strongly related to the properties discussed in the prior section.

Really, a property is a kind of descriptor - technically speaking, the property
built-in is just a simplified way to create a specific type of descriptor that runs
method functions on attribute accesses.

In fact, descriptors are the underlying implementation mechanism for a variety
of class tools, including both properties and slots.

Descriptors

Descriptors are created as independent classes, and they are assigned to class
attributes just like method functions.

Like any other class attribute, they are inherited by subclasses and instances.

Their access-interception methods are provided with both a self for the
descriptor instance itself, as well as the instance of the client class whose
attribute references the descriptor object.

Because of this, they can retain and use state information of their own, as well
as state information of the subject instance. For example, a descriptor may call
methods available in the client class, as well as descriptor-specific methods it
defines.

Descriptors

Like a property, a descriptor manages a single, specific attribute; although it
can't catch all attribute accesses generically, it provides control over both fetch
and assignment accesses and allows us to change an attribute name freely from
simple data to a computation without breaking existing code,

Unlike properties, descriptors are broader in scope, and provide a more general
tool.

For instance, because they are coded as normal classes, descriptors have their
own state, may participate in descriptor inheritance hierarchies, can use
composition to aggregate objects, and provide a natural structure for coding
internal methods and attribute documentation strings.

The Basics

As mentioned previously, descriptors are coded as separate classes and provide
specially named accessor methods for the attribute access operations they wish
to intercept - get, set, and deletion methods in the descriptor class are
automatically run when the attribute assigned to the descriptor class instance is
accessed in the corresponding way.

class Descriptor:
"docstring goes here"
def _get (self, instance, owner): ... # Return attr value
def set (self, instance, value): ... # Return nothing (None)
def _delete (self, instance): ... # Return nothing (None)

A First Example

To see how this all comes together in more realistic code, let's get started with
the same first example we wrote for properties.

The following defines a descriptor that intercepts access to an attribute named
name in its clients.

lts methods use their instance argument to access state information in the
subject instance, where the name string is stored.

Like properties, descriptors work properly only for new-style classes, so be sure
to derive both classes in the following from object if you're using 2.X - it's not
enough to derive just the descriptor, or just its client

class Name: # Use (object) in 2.X
"name descriptor docs"”
def get (self, instance, owner):
print('fetch...")
return instance. name
def set (self, instance, value):
print('change...")
instance. name = value

def _delete (self, instance):
print('remove...")
del instance. name

class Person: # Use (object) in 2.X
def _init_ (self, name):
self. name = name
name = Name() # Assign descriptor to attr

bob = Person('Bob Smith")
print(bob.name)

bob.name = 'Robert Smith'
print(bob.name)

del bob.name

print('-"'*20)

sue = Person('Sue Jones"')
print(sue.name)
print(Name. doc)

bob has a managed attribute
Runs Name.__get__
Runs Name. _set

Runs Name.__delete

sue inherits descriptor too

Or help(Name)

c:\code> py -3 desc-person.py
fetch...

Bob Smith
change...
fetch...
Robert Smith

remove...

Sue Jones
name descriptor docs

class Person:
def _init (self, name):
self. name = name

class Name:
"name descriptor docs”
def get (self, instance, owner):
print('fetch...")

return instance. name

def _set (self, instance, value):

print('change...")
instance. name = value
def _ delete_ (self, instance):
print('remove...")
del instance. name
name = Name()

Using a nested class

How Properties and Descriptors Relate

As mentioned earlier, properties and descriptors are strongly related - the
property built-in is just a convenient way to create a descriptor.

class Property:
def _init (self, fget=None, fset=None, fdel=None, doc=None):
self.fget = fget
self.fset = fset
self.fdel = fdel # Save unbound methods
self. doc__ = doc # or other callables

__get_ (self, instance, instancetype=None):
if instance is None:
return self
if self.fget is None:
raise AttributeError(“can't get attribute")
return self.fget(instance) # Pass instance to self
in property accessors
def _set (self, instance, value):
if self.fset is None:
raise AttributeError("can't set attribute")
self.fset(instance, value)

def _ delete_ (self, instance):
if self.fdel is None:
raise AttributeError(“can't delete attribute")
self.fdel(instance)

class Person:
def getName(self): print('getName...")
def setName(self, value): print('setName...")
name = Property(getName, setName) # Use like property()

x = Person()
X.nhame

X.name = 'Bob’
del x.name

c:\code> py -3 prop-desc-equiv.py
getName...

setName...
AttributeError: can't delete attribute

__getattr__ and __getattribute__

__getattr__ is run for undefined attributes—because it is run only for attributes
not stored on an instance or inherited from one of its classes, its use is
straightforward.,

__Qetattribute__ is run for every attribute—because it is all-inclusive, you must
be cautious when using this method to avoid recursive loops by passing
attribute accesses to a superclass.

The __getattr__ and __getattribute__ methods are also more generic than
properties and descriptors—they can be used to intercept access to any (or even
all) instance attribute fetches, not just a single specific name. B

The Basics

If a class defines or inherits the following methods, they will be run
automatically when an instance is used in the context described by the

comments to the right:

def _ getattr_ (self, name):

def _ getattribute_ (self, name):
def setattr (self, name, value):
def delattr (self, name):

On undefined attribute fetch [obj.name]

On all attribute fetch [obj.name]

On all attribute assignment [obj.name=value]
On all attribute deletion [del obj.name]

A First Example

Generic attribute management is not nearly as complicated as the prior section
may have implied.

To see how to put these ideas to work, here is the same first example we used
for properties and descriptors in action again, this time implemented with
attribute operator overloading methods.

Because these methods are so generic, we test attribute names here to know
when a managed attribute is being accessed; others are allowed to pass
normally.

class Person:

def

def

def _setattr (self, attr, value):

__init_ (self, name):
self. name = name

__getattr (self, attr):

print('get: ' + attr)

if attr == 'name':
return self. name

else:

raise AttributeError(attr)

print('set: ' + attr)
if attr == 'name':
attr = ' name'
self. dict [attr] = value

def delattr (self, attr):

print(‘del: ' + attr)
if attr == 'name':

attr = ' _name'
del self. dict [attr]

Portable: 2.X or 3.X
On [Person()]
Triggers __setattr__!

On [obj.undefined]
Intercept name: not stored

Does not loop: real attr
Others are errors

On [obj.any = value]

Set internal name
Avoid looping here

On [del obj.any]

Avoid looping here too
but much less common

bob = Person('Bob Smith')
print(bob.name)

bob.name = 'Robert Smith'
print(bob.name)

del bob.name

print('-"'%*20)

sue = Person('Sue Jones')
print(sue.name)
#print(Person.name. doc_)

bob has a managed attribute
Runs __getattr__
Runs __setattr__

Runs _ delattr

sue inherits property too

No equivalent here

c:\code> py -3 getattr-person.py
set: name

get: name

Bob Smith

set: name

get: name

Robert Smith

del: name

set: name
get: name
Sue Jones

Example: Attribute Validations

