
Managed Attributes



Why Manage Attributes?

 Object attributes are central to most Python programs - they are where we 
often store information about the entities our scripts process. 

 Normally, attributes are simply names for objects; a person’s name attribute, for 
example, might be a simple string, fetched and set with basic attribute syntax.





Inserting Code to Run on Attribute 
Access

 A better solution would allow you to run code automatically on attribute access, 
if needed. 

 That’s one of the main roles of managed attributes - they provide ways to add 
attribute accessor logic after the fact. 

 More generally, they support arbitrary attribute usage modes that go beyond 
simple data storage.



The four accessors

 The __getattr__ and __setattr__ methods, for routing undefined attribute 
fetches and all attribute assignments to generic handler methods.

 The __getattribute__ method, for routing all attribute fetches to a generic 
handler method. 

 The property built-in, for routing specific attribute access to get and set handler 
functions. 

 The descriptor protocol, for routing specific attribute accesses to instances of 
classes with arbitrary get and set handler methods, and the basis for other tools 
such as properties and slots. 



The four accessors

 All four techniques share goals to some degree, and it’s usually possible to code 
a given problem using any one of them. 

 They do differ in some important ways, though. 

 For example, the last two techniques listed here apply to specific attributes, 
whereas the first two are generic enough to be used by delegation-based proxy 
classes that must route arbitrary attributes to wrapped objects. 



Properties

 The property protocol allows us to route a specific attribute’s get, set, and 
delete operations to functions or methods we provide, enabling us to insert 
code to be run automatically on attribute access, intercept attribute deletions, 
and provide documentation for the attributes if desired.

 Properties are created with the property built-in and are assigned to class 
attributes, just like method functions. Accordingly, they are inherited by 
subclasses and instances, like any other class attributes. 

 Their access-interception functions are provided with the self instance 
argument, which grants access to state information and class attributes available 
on the subject instance.



Properties

 A property manages a single, specific attribute; although it can’t catch all 
attribute accesses generically, it allows us to control both fetch and assignment 
accesses and enables us to change an attribute from simple data to a 
computation freely, without breaking existing code. 

 As we’ll see, properties are strongly related to descriptors; in fact, they are 
essentially a restricted form of them.



The Basics

 A property is created by assigning the result of a built-in function to a class 
attribute: 



A First Example

 To demonstrate how this translates to working code, the following class uses a 
property to trace access to an attribute named name; the actual stored data is 
named _name so it does not clash with the property.







Computed Attributes 



Coding Properties with Decorators

 As of Python 2.6 and 3.0, property objects also have getter, setter, and deleter
methods that assign the corresponding property accessor methods and return a 
copy of the property itself. 

 We can use these to specify components of properties by decorating normal 
methods too, though the getter component is usually filled in automatically by 
the act of creating the property itself.









Descriptors

 Descriptors provide an alternative way to intercept attribute access; they are 
strongly related to the properties discussed in the prior section. 

 Really, a property is a kind of descriptor - technically speaking, the property 
built-in is just a simplified way to create a specific type of descriptor that runs 
method functions on attribute accesses. 

 In fact, descriptors are the underlying implementation mechanism for a variety 
of class tools, including both properties and slots.



Descriptors

 Descriptors are created as independent classes, and they are assigned to class 
attributes just like method functions. 

 Like any other class attribute, they are inherited by subclasses and instances. 

 Their access-interception methods are provided with both a self for the 
descriptor instance itself, as well as the instance of the client class whose 
attribute references the descriptor object. 

 Because of this, they can retain and use state information of their own, as well 
as state information of the subject instance. For example, a descriptor may call 
methods available in the client class, as well as descriptor-specific methods it 
defines.



Descriptors

 Like a property, a descriptor manages a single, specific attribute; although it 
can’t catch all attribute accesses generically, it provides control over both fetch 
and assignment accesses and allows us to change an attribute name freely from 
simple data to a computation without breaking existing code. 

 Unlike properties, descriptors are broader in scope, and provide a more general 
tool.

 For instance, because they are coded as normal classes, descriptors have their 
own state, may participate in descriptor inheritance hierarchies, can use 
composition to aggregate objects, and provide a natural structure for coding 
internal methods and attribute documentation strings.



The Basics

 As mentioned previously, descriptors are coded as separate classes and provide 
specially named accessor methods for the attribute access operations they wish 
to intercept - get, set, and deletion methods in the descriptor class are 
automatically run when the attribute assigned to the descriptor class instance is 
accessed in the corresponding way.



A First Example

 To see how this all comes together in more realistic code, let’s get started with 
the same first example we wrote for properties. 

 The following defines a descriptor that intercepts access to an attribute named 
name in its clients. 

 Its methods use their instance argument to access state information in the 
subject instance, where the name string is stored. 

 Like properties, descriptors work properly only for new-style classes, so be sure 
to derive both classes in the following from object if you’re using 2.X - it’s not 
enough to derive just the descriptor, or just its client











How Properties and Descriptors Relate

 As mentioned earlier, properties and descriptors are strongly related - the 
property built-in is just a convenient way to create a descriptor. 









__getattr__ and __getattribute__

 __getattr__ is run for undefined attributes—because it is run only for attributes 
not stored on an instance or inherited from one of its classes, its use is 
straightforward. 

 __getattribute__ is run for every attribute—because it is all-inclusive, you must 
be cautious when using this method to avoid recursive loops by passing 
attribute accesses to a superclass. 

 The __getattr__ and __getattribute__ methods are also more generic than 
properties and descriptors—they can be used to intercept access to any (or even 
all) instance attribute fetches, not just a single specific name. B



The Basics

 If a class defines or inherits the following methods, they will be run 
automatically when an instance is used in the context described by the 
comments to the right:



A First Example

 Generic attribute management is not nearly as complicated as the prior section 
may have implied. 

 To see how to put these ideas to work, here is the same first example we used 
for properties and descriptors in action again, this time implemented with 
attribute operator overloading methods. 

 Because these methods are so generic, we test attribute names here to know 
when a managed attribute is being accessed; others are allowed to pass 
normally.









Example: Attribute Validations 

p.1256 (Learning Python 5th Edition)


